Com informações da UCSB - 17/04/2018
Projeto Cérebro Quântico
Nos últimos séculos, os cientistas têm-nos comparado com máquinas e as máquinas conosco - temos uma "maquinaria celular" e computadores são "cérebros eletrônicos", lembra-se?
Com o advento das tecnologias quânticas, físicos e neurocientistas estão pensando em dar um upgrade nessas comparações.
"Será que nós poderíamos ser computadores quânticos, em vez de meros robôs inteligentes que estão projetando e construindo computadores quânticos?" propõe o professor Matthew Fisher, da Universidade da Califórnia em Santa Barbara, nos EUA.
E ele vai tentar responder a essa pergunta; não sozinho, mas junto a uma equipe interdisciplinar e interinstitucional que está se reunindo em torno de um projeto multimilionário batizado de Projeto Cérebro Quântico, ou QuBrain (Quantum Brain Project).
Computação quântica biológica
Algumas funções que o cérebro realiza continuam a iludir a neurociência - o substrato que "guarda" as memórias de longo prazo, por exemplo, ou mesmo como o cérebro registra, retém e recupera todas as memórias.
A mecânica quântica, que lida com o comportamento da natureza em níveis atômicos e subatômicos, pode ser capaz de dar algumas pistas. E isso, por sua vez, poderia ter grandes implicações em muitos níveis, da computação quântica e das ciências dos materiais à biologia, saúde mental e até mesmo na conceituação do que é ser humano.
A ideia de uma computação quântica ocorrendo em nossos cérebros não é nova. O que Fisher planeja fazer é identificar um conjunto preciso e único de componentes biológicos e mecanismos chave que possam fornecer a base para o processamento quântico no cérebro.
Qubits bioquímicos
A marca registrada dos computadores quânticos reside em sistemas infinitesimais de átomos e íons que podem funcionar como qubits ao apresentar o estranho fenômeno do entrelaçamento, ou emaranhamento quântico. Vários qubits podem formar redes que codificam, armazenam e transmitem informações.
Ocorre que, nos computadores quânticos que estamos tentando construir, esses efeitos são gerados e mantidos em ambientes altamente controlados, isolados e a baixas temperaturas, porque qualquer interferência do ambiente faz com que os dados e a computação inteira se percam - e, na escala dos átomos, há sempre outros átomos, elétrons e fótons interferindo uns com os outros.
Assim, o cérebro, quente e úmido, tipicamente não é visto como um ambiente propício para exibir efeitos quânticos, já que esses efeitos devem ser facilmente "lavados" pelo movimento térmico de átomos e moléculas.
No entanto, Fisher afirma que os spins nucleares (no núcleo dos átomos, e não o spin dos elétrons) fornecem uma exceção à regra.
"Spins nucleares extremamente bem isolados podem armazenar - e talvez processar - informações quânticas em escalas de tempo humanas de horas ou mais," disse ele, acrescentando que os átomos de fósforo - um dos elementos mais abundantes no corpo humano - têm o spin nuclear necessário que pode servir como um qubit bioquímico.
Assim, um dos primeiros esforços experimentais de Fisher será monitorar as propriedades quânticas dos átomos de fósforo, particularmente o entrelaçamento entre dois spins nucleares de fósforo quando os dois átomos estão ligados em uma molécula que passa por processos bioquímicos.
Enquanto isso, Matt Helgeson e Alexej Jerschow, da Universidade de Nova York, investigarão a dinâmica e o spin nuclear das moléculas de Posner - nanoaglomerados esféricos de fosfato de cálcio - e se elas têm a capacidade de proteger os spins nucleares dos qubits atômicos de fósforo, o que poderia viabilizar o armazenamento de informações quânticas. Eles também explorarão o potencial do processamento não-local de informações quânticas que poderia ser ativado pelo emparelhamento e dissociação das moléculas de Posner.
Neurônios entrelaçados
Em outro conjunto de experimentos, a equipe do professor Tobias Fromme, da Universidade Técnica de Munique, na Alemanha, estudará a possível contribuição da mitocôndria para o entrelaçamento e seu acoplamento quântico com os neurônios. O objetivo é determinar se essas organelas celulares - responsáveis por funções como o metabolismo e a sinalização celular - podem transportar moléculas de Posner dentro e entre os neurônios através de suas redes tubulares.
A expectativa é que fundir e fissionar as mitocôndrias possa permitir o estabelecimento do entrelaçamento quântico não-local intra e intercelular. A subsequente dissociação das moléculas de Posner poderia desencadear a liberação de cálcio, correlacionado através da rede mitocondrial, ativando a liberação de neurotransmissores e o subsequente disparo sináptico através do que seria essencialmente uma rede quântica de neurônios - um fenômeno que Fromme pretende emular em laboratório.
"Se a questão sobre se processos quânticos ocorrem no cérebro for respondida de forma afirmativa, isso pode revolucionar nossa compreensão e o tratamento da função cerebral e da cognição humana," disse Matt Helgeson.
Agora será uma questão de acompanhar os progressos do Projeto Cérebro Quântico e ver se todas essas hipóteses sustentam-se na prática - ou se vamos precisar usar nossos cérebros misteriosos para bolar outras teorias.